Sponsers

Posts Tagged ‘silicon transistors’

Intel’s new revolutionary Tri-Gate 3D transistors

Intel senior fellow Mark Bohr showed off the company’s revolutionary new 3D transistors in an announcement this week in San Francisco. The power, performance, and real estate gains are impressive. Moore’s Law seems to be holding.

Tri-Gate 3D Transistors

In the video below, Bohr explains that these transistors are normally built in a two-dimensional fashion, where electrons flow from one end of a transistor to another in a planar way. With the Tri-Gate transistors, they flow sideways, then up, then across and then down again. This allows the transistor to take up less space on a chip, the same way a skyscraper is a more efficient use of a plot of land.

From the press release:

Intel today announced a significant breakthrough in the evolution of the transistor, the microscopic building block of modern electronics. For the first time since the invention of silicon transistors over 50 years ago, transistors using a three-dimensional structure will be put into high-volume manufacturing. Intel will introduce a revolutionary 3-D transistor design called Tri-Gate, first disclosed by Intel in 2002, into high-volume manufacturing at the 22-nanometer (nm) node in an Intel chip codenamed Ivy Bridge. A nanometer is one-billionth of a meter. The 22nm 3-D Tri-Gate transistors provide up to 37 percent performance increase at low voltage versus Intel’s 32nm planar transistors. This incredible gain means that they are ideal for use in small handheld devices, which operate using less energy to “switch” back and forth. Alternatively, the new transistors consume less than half the power when at the same performance as 2-D planar transistors on 32nm chips.